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= Data Parallelism is a key parallel pattern

= How can we efficiently and productively use it?
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Hello world of data parallelism

* Consider this intrinsically parallel procedure

def saxpy(a, X, y):
return map(lambda xi,yi: a*xi + yi, X, y)

... or for the lambda averse ...

def saxpy(a, X, y):
return [a*xi + yi for xi,yi in zip(x,y)]

= This procedure is both
= completely valid Python code

= compilable to data parallel languages like CUDA or
OpenCL
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Q\ Embedded Subset of Python

= Using standard Python (@cu

constructs and syntax @&t example(x, y):
a = map(f, x, y)
return reduce(g, a, 0)

» Clearly delineated via @cu

@cufunctiondecorator  j.f copperhead function():
return 0

def python_function():
return ©
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A (Very) Strict Subset

= This is not Cython for GPUs

= Batteries notincluded
= We're aiming for high performance

MDMna

» Restricted syntax and data structures

" Homogeneous arrays
" No classes, metaclasses

= Strong typing

* Needed for performance
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) : Side effects

= Side effects are forbidden in Copperhead code

@cu
def axpy(a, X, y): def axpy(a, X, y):
def triad(xi, yi): for i in indices(y):

return a * xi + yi y[i] = a * x[1] + y[i]
return map(triad, x, y) return y

Valid Invalid

= Side effects are allowed in (sequential) Python code

a = CuArray([1,2,3,4,5])
a.update([1, 3], [-4, -2])
print a
» [1, -4, 3, -2, 5]
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Parallel Semantics

= Python sequentially orders computation
= Inside to outside, left to right of expressions

= Top to bottom of statements
= Lefttoright for x in iterable:

= Copperhead relaxes ordering for parallelism o
= Expressions may be evaluated out of order
= Data dependencies observed

= Primitives like map may be

executed in any order
* Including Python's order
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Synchronization

= Synchronization comes from data dependencies

= Higher productivity 3 :
* No data races T e =
= No explicit barriers
b =
= Compiler’s job C =

* find data dependencies
» schedule operations efficiently

map(foo, a)
scatter(b, i, c)

map(foo, a)
map(bar, b)
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Auto-Sequentializing Compiler

= Data parallel primitives can:
= Execute in parallel
= Execute as a sequential loop

= Orexecute at pointsin
between

= Copperhead code leaves this
implicit
= User can influence mapping of
nested primitives via compiler
options
= Ultimately, an autotuning
problem
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Mapping strategy for modern hardware

= Modern parallel hardware is MIMD

= Classical data parallel compilers
flatten data parallelism for SIMD
arrays

= NESL, Data Parallel Haskell | E dEE R B R

-Pamww-iw u -wav" pone | -""W‘” jroie_} SES

Raster Engine
sm sm sm sm
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= Use segmented operations to
flatten nested data parallelism

= |n contrast, we map directly to
MIMD parallelism

(4

= No default “flattening transform’
* Much better performance
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Phase Analysis, Scheduling, Fusion

Phase analysis finds synchronization
points

Performed by abstract interpretation Sync
using a simple completion space

= Same analysis for sequential and parallel
operations

Operations are then scheduled to
respect data dependences

= Greedy scheduler reorders computation
to be as early as possible
Operations between synchronization

points are fused
Critical for performance (2-10x gain)
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Runtime Model

Runtime Static Compilation
= Fits productivity programmer mindset

= Avoid JIT overspecialization due to
compilation overhead
Currently we have a CUDA backend

Every Copperhead entry point becomes a C++ function
compiled in a shared object
= May launch multiple kernels

Runtime overheads (s)

Runtime overheads | u
carefully engineered . | Crleonelon
» Fully cached, on order of 0.001 1 —— FFully cached

200ps/call 0.0001 - .
] . SGEMV SGBMV SGEMM  Lanczos
= Full compilation, ~10 s/call teration
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On-chip Memory Usage

= How can we use information from the Copperhead
source code to influence on-chip memory
placement?

= Consider the following code:

@cu y is closed over
def outer(x, y)i«—

def inner(xi):
return sum(map(op_mul, xi, y))
return map(inner, Xx)

* Sincey is closed overin afunction used inamap, we
know it is intensively used

= A good candidate for on-chip memory placement
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Efficient coexistence with other libraries

= Copperhead must efficiently coexist with preexisting code
= Copperhead programs can call preexisting libraries
* Libraries must be:

= Wrapped in C++ to operate on Copperhead data
structures in a side-effect free manner

= Wrapped in Python with Copperhead type and shape
information

= As proof of concept, we now can call portions of BLAS from
Copperhead programs

= Library calls are compiled into the C++ code for the function
= No additional Python/Copperhead overhead is introduced

15/20



Sparse Matrix Vector Multiply

* Three SpMV kernels: CSR
scalar, CSR vector, ELL

= On average, achieve 98%,
45%, and 79% of hand-
coded performance (CUSP
Library)
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A\ Preconditioned Conjugate Gradient

J\

Solver

= Preconditioned Conjugate Gradient solver implemented in
Copperhead

= Based on linear step in non-linear optical flow solver
= Block Jacobi Preconditioner

= Custom SpMV reaches 90% of hand-coded CUDA

= Qverall solver reaches 72% of hand-coded CUDA
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Lanczos Eigensolver

= Case study: calling BLAS from Copperhead
= Lanczos eigensolver from Damascene image contour detector

* Including all SEJITS overheads and Python iteration loop overhead, we
come close to a handcoded C++ implementation (CUSP/CUBLAS)
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Scipy/Numpy Copperhead Hand Coded

Bryan Catanzaro, Bor-Yiing Su, Narayanan Sundaram, Yunsup Lee, Mark Murphy, Kurt Keutzer, “Efficient,

High-Quality Image Contour Detection”. ICCV 2009. 18/20



SVM Training

= SVM Training is a Quadratic Programming optimization

problem
* |Implemented in Copperhead, comparing against our own
GPUSVM
= Good performance requires fusion, scheduling, on-chip
memories
. SVMTraining Performance
100 ]
ko Competitive with our
g 6o | — GPUSVM hand coded
! T ~ implementation
" Web | USPS | MNIST | Adult | Average |

E GPUSVM [ Copperhead
Bryan Catanzaro, Narayanan Sundaram and Kurt Keutzer, "Fast Support Vector Machine

Training and Classification on Graphics Processors”. ICML 2008. 19/20



J \  Conclusion

= Copperhead provides good performance, while
increasing productivity

= On average, 3.75x less lines of code, ability to tap into
Python ecosystem

» 45-105% of handcoded CUDA performance
* More details in our PPoPP 2011 paper:

Bryan Catanzaro, Michael Garland, Kurt Keutzer, "Copperhead: Compiling an
Embedded Data Parallel Language”, PPoPP 2011.

Copperhead is freely available (Apache 2.0 license) at:
http://code.gooqgle.com/p/copperhead
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